
Why InfluxDB is building Flux
Paul Dix

@pauldix

paul@influxdata.com

• Query planner

• Query optimizer

• Turing complete language, VM, and query engine

• Multi-language support in Engine

• Multi-data source support

• InfluxDB, CLI, REPL, Go library

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Comments

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Named Arguments

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

String Literals

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Buckets, not DBs

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Duration Literal

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:2018-11-07T00:00:00Z)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Time Literal

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Pipe forward operator

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system")

Anonymous Function

// get all data from the telegraf db
from(bucket:”telegraf/autogen”)
 // filter that by the last hour
 |> range(start:-1h)
 // filter further by series with a specific measurement and field
 |> filter(fn: (r) => (r._measurement == "cpu" or r._measurement == “cpu")
 and r.host == “serverA")

Predicate Function

The journey…

The design of IFQL, the New
Influx Functional Query Language

A new query language for
InfluxDB

A new scripting & query
language for InfluxDB

A new scripting & query
language for InfluxDB

IFQL -> Flux

from(db:"telegraf")
 |> range(start:-1h)
 |> filter(fn: (r) => r._measurement == "foo")
 |> exponentialMovingAverage(size:-10s)

–Paul Dix

“I don’t want to live in a world where the best language humans
could think of for working with data was invented in the 70’s”

–tylerl on HN

“So you're saying you're combining the expressiveness of SQL with
the readability of, what, perl?”

–petre in response to tylerl on HN

“Perl is actually readable compared to that.”

–rs86 on HN

“SQL has a very solid ground in research - a lot of - in relational
algebra. If you try to make a query language that is a dsl for anything
without a really different data model underneath, you will accomplish

nothing great.”

–gaius on HN

“The ultimate fantasy of every programmer is to a) invent a new
language and b) force other people to use it. It’s OK, we all get it, it’s

fine. But let’s be honest about our motivations...”

–fake-name on HN

“Holy shit. The language name alone is a really, really stupid idea.”

–lixtra on HN

“It was a bad idea to focus on Flux vs SQL.”

Paul, don’t be a jerk

!zeroSum()

–Paul Dix

“I don’t want to live in a world where the best language humans
could think of for working with data was invented in the 70’s”

–Paul Dix

“I don’t want to live in a world where the best language humans
could think of for working with data was invented in the 70’s”

–Paul Dix

“I don’t want to live in a world where…”

–Paul Dix

“I don’t want to live in a world where we can’t try something new”

4GL

Domain Specific Languages

JavaScript?

GUI

Many Data Sources

Optimize for each

Cross compilation

AST = API

Distributed Engine

Tables Everywhere

from(bucket: "foo")
 |> range(start: -10m)
 |> filter(fn: (r) => r._measurement == "cpu")
 |> group(columns: ["_measurement"])
 |> sort(columns: ["_value"])

Sorting by value!

Group by anything

Measurements, tags, fields
don’t matter

Beyond Queries

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message)

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message)

tasks

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message)

cron scheduling

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message)

packages & imports

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message)

map

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message) String interpolation

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message)

Ship data elsewhere

option task = {
name: "email alert digest",
cron: "0 5 * * 0"

}
import "smtp"

body = ""

from(bucket: "alerts")
 |> range(start: -24h)
 |> filter(fn: (r) => (r.level == "warn" or r.level == "critical") and r._field == "message")
 |> group(columns: ["alert"])
 |> count()
 |> group()
 |> map(fn: (r) => body = body + "Alert {r.alert} triggered {r._value} times\n")

smtp.to(
config: loadSecret(name: "smtp_digest"),
to: "alerts@influxdata.com",
title: "Alert digest for {now()}",
body: message)

Store secrets in a
store like Vault

Where we are…

1. Make it powerful

2. Make it easy

3. Make it fast

1. Make it powerful

2. Make it easy

3. Make it fast

Flux in InfluxDB 1.7

2.0

• Multi data source

• Multi data sink

• Turing complete

• Liberally licensed

• Not tied to InfluxDB

Bigger than InfluxDB!

Thank you
Paul Dix

@pauldix

paul@influxdata.com

