Treating Dashboards Like Code

Scott Kidder, Staff Software Engineer @ Mux
Grafanacon, February 26,2019

» Agenda

+ Background on Mux

+ Monitoring for Mux Data

- Greenfield Monitoring Opportunities with Mux Video
+ Goals for monitoring

+ Questions

MUX

Background on Mux

MUX

& demo.mux.com @] G a +

) Whatis Mux?

FILTERS BROWSER TIMEFRAME
Y Add a Filter Chrome 4 Last 24 hours v
METRICS
OVERALL VIEWER EXPERIENCE TOTAL VIDEO VIEWS

SCORE

Overall Viewer Experience 87 > 8 7 1 - 2 7
N

Playback Success 95 90

v/\ | /L\% M
Startup Time 81 \m\/i\ 2 7 2\ 86

- Mux Data: Analytics for Video
2016

\ // \ /// \ o)
\ b \
\ \\ ’ \ \ 84
\ 4V \/ O\
1S 67 %
82 i .
. - Smoothness 97 5pm 7pm 9pm 11pm 1am 3am 5am 7am 9am 11am 1pm 3pm 5pm & a >
» Mux Video: API for Video (201
|
® Overall Viewer Experience Score
Video Quality 96
] ™ BREAKDOWN INSIGHTS VIDEO VIEWS
- Mux Video makes it easy to
BASIC))
Overall Viewer Experience Score
[n [
ublish video with a REST API call
Max Resolution HD
Max Frame Rate 29.970
Aspect Ratio 16:9

Playback IDs GET /video/v1/assets/{:id}/playback-ids

+ Optimal video encoding settings
chosen automatically

em to THUMBNAIL SAMPLES See in doc:

generated for Assets, Live Keys, and other playable resources

Playback IDs are
create a stream.mux.com URL, which can be used as the source for a video player

Show full response >

GET https://image.mux.com/CrzXQfRVGvb9ADB5kM
t3VcgVNEdbuhin/thumbnail.png?
public CrzXQfRVGvb9ADB5kMt3VecgVNEdbuhin Copy Url width=214&height=121&fit_mode=pad

Tracks GET /video/v1/assets/{:id}/tracks

Tracks are different representations of an asset's content (audio, video, text). Show full response >

» Deployments in AWS and Google
Cloud

x video YYw2S31dbbt710G81ZrZi7jx8qUPb7doJ >

. 314x178 @0:02
£ audio 1L9KY8RTh9017QK1G2ZauxK6y5L3aXNSMGbk6DVOO1iYJU >

Monitoring for Mux Data

MUX

) ForaMoment, Let’s Return to a Simpler Time

- Mux has used Grafana since inception (early 2016)

-+ Single deployment of Rancher container orchestration system in
AWS

+ Supported Mux Data, our only product at the time
- Single Grafana instance for all dashboards

- Single InfluxDB instance for application metrics

MUX

AWS US East 1

Kapacitor

|

Rancher Service

Mux
Monitored

App

I
Statsd

Y

Telegraf

Y

€— InfluxDB

Chronograf

A

—Grafana

A

o0
4 h

Internal
Monitoring
Users

MUX

But in many ways, things were
more difficult...

MUX

Problems began to surtace

- Management of alerting rules was performed in Chronograf
+ Ran a second visualization tool just to administer alerting rules
+ No versioned history of alerting rules

+ Rules were often disabled during a deploy or maintenance, and
then people would forget to re-enable them, leading to undetected
Incidents

- Unclear why alerts were disabled, and whether it’s safe to delete

MUX

Greenfield Monitoring
Opportunities with Mux Video

MUX

» Mux Video Development

- Late 2017 we began developing Mux Video

- We had already run some proof-of-concept Kubernetes cluster
with Mux Data

- Decided to run all services in Kubernetes and monitor with
Prometheus and Grafana

MUX

12

GCE US East 1

3

O

Prometheus

v
6

Grafana
A

o0
4 h

Internal
Monitoring
Users

GCE US East 4

3

-O

Prometheus

&

Grafana
A

MUX

Goals for Monitoring

MUX

» Goals

1. Easily configure which services are scraped by Prometheus
2. Run policy checks on alert rules with each build
3. Store the dashboards and alert rules alongside code

4. Automatically deploy dashboards and alert rules to Kubernetes
clusters each time we ship code

MUX

Goal #1

Easily configure which services are
scraped by Prometheus

MUX

® Prometheus Monitoring in Kubernetes

+ Using the Prometheus Operator to configure Prometheus and
Alertmanager

+ https:/github.com/coreos/prometheus-operator

+ Uses Kubernetes label metadata to target which services to
scrape and on which port

MUX

B Prometheus: Kubernetes Service Monitor

apivVersion:
monitoring.coreos.com/vl
kind: ServiceMonitor
metadata:

name: core-servers

namespace: monitoring

labels:

k8s-app: core-servers

spec:

jJjobLabel: core-servers

1) Examine services in all Kubernetes namespaces | |namespaceSelector:
any: true

selector:
2) Match on services with a "'monitoring: core” label matchLabels:
monitoring: core

3) Scrape whatever port is named “metrics’ - [port: etrics

interval: 10s)
honorlLabels: true | /.L /.

http://monitoring.coreos.com/v1

B Prometheus: Monitored Service

apiVersion: vl

kind: Service

metadata:
name: kafka

namespace: default
labels:

. o app: kafka
1) Simply add the “monitoring: core”
label to a server monitoring: core

MUX

® Services Scraped

Targets

accesslogs-kafka (3/3 up)

Last
Endpoint State Labels Scrape Error

http://100.96.55.84:5556/metrics UP P ——————————— 3.3s ago

http://100.96.58.20:5556/metrics |UP R — 4.169s ago

http://100.96.59.22:5556/metrics | UP R —— 9.769s ago

service="accesslogs-kafka"

apiserver (3/3 up)
Endpoint State Labels Last Scrape Error
https://10.142.0.10:443/metrics UP endpoint="https"] instance="10.142.0.10:443" | namespace="default" 8.029s ago

nttps://10.142.0.3:443/metrics uP 10.574s ago
nttps://10.142.0.9:443/metrics uP 2.951s ago

MUX

Goal #2

Run policy checks on alert rules
with each build

MUX

) Prometheus: Automated Policy Check

’ 4w Policy Check

= Log €4 Artifacts D Timeline £ Environment

4+ Expand groups = Collapse groups @ Delete & Download < Follow

» Preparing build folder 1s
v Running build script 42s
% docker-compose -f .buildkite/docker-compose.yaml run --rm policycheck ./policy-
check.sh
Checking ./core/golang/kafka/monitoring/kafka-consumer.rules.yaml

SUCCESS: 1 rules found

Checking ./core/servers/consul/monitoring/consul.rules.yaml
SUCCESS: 4 rules found

Checking ./core/servers/hadoop/monitoring/hadoop.rules.yaml
SUCCESS: 3 rules found

Checking ./core/servers/zookeeper/monitoring/zookeeper.rules.yaml
SUCCESS: 3 rules found

Checking ./data/internal/servers/chproxy/monitoring/chproxy.rules.yaml | /LO /
SUCCESS: 7 rules found o 0

® Prometheus: Automated Policy Check

MONITORING YAML FILES=$ (find $searchdir -type f -name

‘]) Use prOmtOO‘ to "* rules.yaml" | sort)
for £ in SMONITORING YAML FILES; do

validate alert rules files

rc=S"-
if [[$Src '= 0]]; then
echo "Sf is not a valid Prometheus alert rule

YAML file."
echo mw i
ERRORS="yes"
fi
. . LAST CHAR=S (cat $f | tr '\n' '"#' | tail -c 1)
2) Verity that all files end if [[$LAST CHAR != "#" 1]; then
with a new-line to allow echo "$f does not end with a new line."
] echo mw i
for concatenation ERRORS="yes"

fi
done

MUX

Goal #3

Store the dashboards and alert
rules alongside code

MUX

® Code Organization

4 gervers
> autoscale
4 consul

1) Dashboards are named “*- 2 monitoring

- {} consul-dashboard.json

dashboard.json”, and stored in a p— consul.rules.yam! —
‘monitoring/grafana” directory for the - consuLaienes

README.md
2SSOC | ate d com p onen t run-aws-us-east-1-production.yami
run-aws-us-east-1-snowflake-staging.yami

run-aws-us-east-1-staging.yami
run-gce-europe-west1-production.yaml
run-gce-us-east1-production.yaml
run-gce-us-east4-production.yami
run-gce-us-west1-staging.yami
run-local.yaml|
run.yaml|

4 hadoop

2) Alert rules are named S

() . 4 grafana

“.rules.yaml” and kept in a —— —
-

{} hadoop-hdfs-dashboard.json

‘monitoring” directory - L

run-aws-us-east-1-staging.yami

run-gce-us-east1-production.yaml

run-gce-us-west1-staging.yamil '/LO/
@ ®

run.yaml

Goal #4
Automatically deploy dashboards
and alert rules to Kubernetes
clusters each time we ship code

MUX

D Automatic Deployment of Dashboards and Alert Rules

- Our Buildkite builds automatically generate Kubernetes manifest
for servers across all target environments

- Also generate Kubernetes ConfigMaps with Gratfana dashboards
and Prometheus alert rules

- Buildkite deploy plan applies Kubernetes manifests and
ConfigMaps to each Kubernetes cluster

- Grafana and Prometheus ConfigMaps automatically reloaded

MUX

) Gather Alerting Rules

#!/bin/bash

set -e

RULES DIR=$1

mkdir -p SOUTPUT DIR

rm -r SOUTPUT DIR/* || true

for searchdir in "${@Q@:2}"; do
RULES FILES=$ (find $searchdir
-type £ -name "*.rules.yaml")

for file in SRULES FILES; do
cp $file $RULES DIR

1) Find all alert rules files
conforming to naming pattern

done
done

MUX

® Generate Kubernetes ConfigMap with Alert Rules

set -e
NAMESPACE=S1
OUTPUT_FILE=$2
RULES_DIR=$3

mkdir -p $(dirname $OUTPUT FILE)

cat <<-EOF > SOUTPUT FILE
apiVersion: vl

1) Begin rendering a Kubernetes kind: ConfigMap
COnflgMap maﬂ|feSt name: prometheus-k8s-rules

namespace: SNAMESPACE
labels:
role: prometheus-rulefiles
prometheus: k8s
data:
EOF

for £ in $(find SRULES DIR -type f -name
"* rules.yaml")

do
2) COncatenate COntentS Of eaCh echo " $(basename $f): |+" >> $OUTPUT_FILE
alert rule file to the ConfigMap L Cat $E | sed "s/?/ /g" >> $OUTPUT FILE

MUX

W Automatic Deployment of Prometheus Alert Rules

* Prometheus Operator includes a contfig reloader that monitors the
ConfigMap for changes

e Sends web hook to Prometheus instructing it to reload its config

MUX

) Gather Grafana Dashboards and Datasources

#!'/bin/bash
set -e

OUTPUT DIR=$1
mkdir -p SOUTPUT DIR
rm -r SOUTPUT DIR/* || true

1) Find all Grafana dashboard [for searchdir in "${@:2}"; do
and datasource f”es DASHBOARD_FILE3=$ (find S$searchdir -type

f | t : 1 f —-name "*-dashboard.json”" -o -name "*-
conrorming to naming pattern 4. ¢asource. json" | sort)

for file in $DASHBOARD_FILES; do
echo "FILE: Sfile"
cp $file $OUTPUT DIR
done

done

MUX

® Render ConfigMap with Grafana Dashboards

Have been using the grafana-dashboards-configmap-generator script at
https://github.com/eedugon/gratana-dashboards-configmap-generator

monitoring/grafana/grafana-dashboards-configmap-generator/bin/grafana dashboards generate.sh \
-n ${MONITORING NAMESPACE} \
-s 200000 \
-0 run/k8s ${NAMESPACE}/monitoring/grafana/config-map.yaml \
-g run/k8s/${NAMESPACE}/monitoring/grafana/run.yaml \
-i run/monitoring/grafana \
--hostname ${GRAFANA HOSTNAME }

MUX

https://github.com/eedugon/grafana-dashboards-configmap-generator

) Grafana Watcher to reload Dashboards

1) Use ‘grafana-watcher’ container to
reload Grafana dashboards supplied
in ConfigMap volume

- name: grafana-watcher

Image: quay.io/coreos/grafana-watcher:v0.0.8
args:
- '--watch-dir=/var/grafana-dashboards-0'
- '--grafana-url=http://localhost:3000'
env:
- name: GRAFANA_USER
valueFrom:

secretKeyRef:
name: grafana-credentials
key: user
- name: GRAFANA_PASSWORD

valueFrom:
secretKeyRef:
name: grafana-credentials
key: password
volumeMounts:
- name: grafana-dashboards-0
mountPath: /var/grafana-dashboards-0
volumes:
- name: grafana-storage
emptyDir: {}
- name: grafana-dashboards-0
configMap:
name: grafana-dashboards-0

MUX

http://quay.io/coreos/grafana-watcher:v0.0.8
http://localhost:3000'

B Next Steps

- Replace ‘gratana-watcher’ pod with Grafana provider config that
automatically reloads dashboards from ConfigMap volume path

- Control over which dashboards are deployed; some Grafana
Instances have dashboards that are unused or point to non-
existent servers

MUX

) Credittothe Mux Team

Adam Brown Matt Ward

MUX

Thank You!

MUX

