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Loki is a horizontally-scalable, highly-available, multi-
tenant log aggregation system inspired by Prometheus.

03/18	 Project started

12/18	 Launched at KubeCon

12/18	 #1 on HN for ~12hrs!

01/19	 ~5k GitHub stars


https://github.com/grafana/loki

goo.gl/5DEVH6

https://github.com/grafana/loki


#0	 Simple and cost effective to operate


#1	 Integrated with existing observability tools


#2	 Cloud Native and Airplane Friendly



#0 Simple to scale



Existing log aggregation systems do full text indexing and support complex queries

DEwMGIwZ => { 
 time: “2018-01-31 15:41:04”, 
 job: “frontend”, 
 env: “dev”, 
 line: “POST /api/prom/push...” 
}

(“time", “2018-01-31 15:41:04”) -> “DEwMGIwZ” 

(“job”, “frontend”)      -> “DEwMGIwZ” 

(“env”, “dev”)       -> “DEwMGIwZ” 

(“line”, “POST”)      -> “DEwMGIwZ” 

(“line”, “/api/prom/push”)    -> “DEwMGIwZ” 

(“line”, “HTTP/1.1”)     -> “DEwMGIwZ” 

(“line”, “502”)       -> “DEwMGIwZ”



(“time", “2018-01-31 15:41:04”) -> “DEwMGIwZ” 

(“job”, “frontend”)      -> “DEwMGIwZ” 

(“env”, “dev”)       -> “DEwMGIwZ” 

(“line”, “POST”)      -> “DEwMGIwZ” 

(“line”, “/api/prom/push”)    -> “DEwMGIwZ” 

(“line”, “HTTP/1.1”)     -> “DEwMGIwZ” 

(“line”, “502”)       -> “DEwMGIwZ”

NodeN…Node1Node0

Existing log aggregation systems do full text indexing and support complex queries



{job=“frontend”, env=“dev”} => { 
 time: “2018-01-31 15:41:04”, 

 line: “POST /api/prom/push HTTP/1.1 502 0" 

}

Loki doesn’t index the text of the logs, instead grouping entries 
into “streams” and indexing those with labels.



#1	 Integrated with 
existing tools



1. Alert 2. Dashboard 3. Adhoc Query

4. Log Aggregation5. Distributed TracingFix!



Prometheus’ data model is very simple:


<identifier> → [ (t0, v0), (t1, v1), ... ] 

Timestamps are millisecond int64, values are float64


Identifiers are bags of (label, value) pairs: 


{job=“foo”, instance=“bar”, ... }

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus


AppsAppsAppsapps

k8s

#0 Prometheus talks to k8s to discover list of targets 

#1 Target information is “relabelled” to build labels 

#2 Metrics are pulled from apps 

#3 Target labels added to series labels



What is Relabelling?



Loki’s data model is very similar:


<identifier> → [ (t0, v0), (t1, v1), ... ] 

Timestamps are nanosecond floats, values are byte arrays.


Identifiers are the same - label sets.

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus
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1. Alert 2. Dashboard 3. Adhoc Query

4. Log Aggregation5. Distributed TracingFix!



#2	Cloud Native and 
Airplane Friendly



Airplane Friendly
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Scale out
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Microservices

promtail



Containerised Kubernetes Native Cloud Storage



#0	 Simple and cost effective to operate


#1	 Integrated with existing observability tools


#2	 Cloud Native and Airplane Friendly



Demo



Whats next?



LogQL

https://goo.gl/8h58zu

rate(({job=”app”} | “/foo” ! “/foo/bar”)[1m]) 
 
extract({job=”default/nginx”}, “code=(\d+)”, “code”, “$1”)  
   |> {code >= 500}  
 
sum(extract({job=”app”}, “code=(\d+)”)) 

https://goo.gl/8h58zu


Launch first beta in ~April

Add Alerts & Rules off logs

Make it easier to get context, ad hoc filtering

Improve clustering & durability



Thanks! Questions? 

(we’re hiring)


