
Grafana Loki: Like Prometheus, but for logs.
Tom Wilkie, Feb 2019

Demo

Tom Wilkie VP Product, Grafana Labs
Previously: Kausal, Weaveworks, Google, Acunu, Xensource
Prometheus & Cortex maintainer, mixins authors etc
Twitter: @tom_wilkie Email: tom@grafana.com

Loki is a horizontally-scalable, highly-available, multi-
tenant log aggregation system inspired by Prometheus.

03/18	 Project started

12/18	 Launched at KubeCon

12/18	 #1 on HN for ~12hrs!

01/19	 ~5k GitHub stars

https://github.com/grafana/loki

goo.gl/5DEVH6

https://github.com/grafana/loki

#0	 Simple and cost effective to operate

#1	 Integrated with existing observability tools

#2	 Cloud Native and Airplane Friendly

#0 Simple to scale

Existing log aggregation systems do full text indexing and support complex queries

DEwMGIwZ => {
 time: “2018-01-31 15:41:04”,
 job: “frontend”,
 env: “dev”,
 line: “POST /api/prom/push...”
}

(“time", “2018-01-31 15:41:04”) -> “DEwMGIwZ”

(“job”, “frontend”) -> “DEwMGIwZ”

(“env”, “dev”) -> “DEwMGIwZ”

(“line”, “POST”) -> “DEwMGIwZ”

(“line”, “/api/prom/push”) -> “DEwMGIwZ”

(“line”, “HTTP/1.1”) -> “DEwMGIwZ”

(“line”, “502”) -> “DEwMGIwZ”

(“time", “2018-01-31 15:41:04”) -> “DEwMGIwZ”

(“job”, “frontend”) -> “DEwMGIwZ”

(“env”, “dev”) -> “DEwMGIwZ”

(“line”, “POST”) -> “DEwMGIwZ”

(“line”, “/api/prom/push”) -> “DEwMGIwZ”

(“line”, “HTTP/1.1”) -> “DEwMGIwZ”

(“line”, “502”) -> “DEwMGIwZ”

NodeN…Node1Node0

Existing log aggregation systems do full text indexing and support complex queries

{job=“frontend”, env=“dev”} => {
 time: “2018-01-31 15:41:04”,

 line: “POST /api/prom/push HTTP/1.1 502 0"

}

Loki doesn’t index the text of the logs, instead grouping entries
into “streams” and indexing those with labels.

#1	 Integrated with
existing tools

1. Alert 2. Dashboard 3. Adhoc Query

4. Log Aggregation5. Distributed TracingFix!

Prometheus’ data model is very simple:

<identifier> → [(t0, v0), (t1, v1), ...]

Timestamps are millisecond int64, values are float64

Identifiers are bags of (label, value) pairs:

{job=“foo”, instance=“bar”, ... }

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus

AppsAppsAppsapps

k8s

#0 Prometheus talks to k8s to discover list of targets

#1 Target information is “relabelled” to build labels

#2 Metrics are pulled from apps

#3 Target labels added to series labels

What is Relabelling?

Loki’s data model is very similar:

<identifier> → [(t0, v0), (t1, v1), ...]

Timestamps are nanosecond floats, values are byte arrays.

Identifiers are the same - label sets.

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus

https://www.slideshare.net/Docker/monitoring-the-prometheus-way-julius-voltz-prometheus

prom
tail

AppsAppsAppsapps

k8s

1. Alert 2. Dashboard 3. Adhoc Query

4. Log Aggregation5. Distributed TracingFix!

#2	Cloud Native and
Airplane Friendly

Airplane Friendly

prom
tail

Apps
Apps

Apps

Scale out

prom
tail

Apps
Apps

Apps

prom
tail

Apps
Apps

Apps

prom
tail

Apps
Apps

Apps

prom
tail

Apps
Apps

Apps

prom
tail

Apps
Apps

Apps

Microservices

promtail

Containerised Kubernetes Native Cloud Storage

#0	 Simple and cost effective to operate

#1	 Integrated with existing observability tools

#2	 Cloud Native and Airplane Friendly

Demo

Whats next?

LogQL

https://goo.gl/8h58zu

rate(({job=”app”} | “/foo” ! “/foo/bar”)[1m]) 
 
extract({job=”default/nginx”}, “code=(\d+)”, “code”, “$1”)  
 |> {code >= 500}  
 
sum(extract({job=”app”}, “code=(\d+)”))

https://goo.gl/8h58zu

Launch first beta in ~April

Add Alerts & Rules off logs

Make it easier to get context, ad hoc filtering

Improve clustering & durability

Thanks! Questions?

(we’re hiring)

