
SQL Datasources in Grafana
Carl Bergquist & Marcus Efraimsson





Usage stats



Mysql:

Postgres:

MSSQL:

22000

7800

3000





Basic usage









Template variables from SQL



What’s new for SQL datasources



Up until Grafana 5.0
● MySQL in 4.3
● Postgres in 4.6

(Oracle Database available as a premium plugin)



Grafana 5.1



Microsoft SQL Server support



Grafana 5.3



Postgres graphical query builder



Postgres TimescaleDB extension support



Grafana 5.4



MySQL graphical query builder



Grafana 6.0



MySQL SSL support





Tips and tricks!



Read only user



Permissions

● Grafana cannot sanitize the database input
● Only grant select permissions on database and tables for database user



Performance

● Easy to write really expensive queries (SELECT * FROM)
● Can slow database server down
● Can hang browser where Grafana is used
● Use a separate database from production/data warehouse



Time zones
● Run Grafana and database server on UTC time zone
● Use time zone-aware data types for storing dates 
● Use epochs (seconds since 1970)



Time series queries
● Most panels expects time series data
● Must include a column named time



Pie Chart panel
● Without having a time 

column?
● You create one



Graph panel - stacked bar chart

???



Graph panel - stacked bar chart
● Need to supply a value for every interval
● Use $__timeGroup/$__unixEpochGroup macro with fill parameter

 
$__timeGroup(dateColumn,‘5m’, 0)
$__unixEpochGroup(dateColumn,‘5m’, 0)



Grafana GitHub stats
Carl Bergquist & Marcus Efraimsson



Background
GitHub Insights

Google Docs



Background cont.
● Pull request activity kept growing

● WHY?
○ Probably because Grafana Labs are growing?
○ We maybe have a lot of new contributors?
○ Non-Grafana Labs contributors are probably as active as before?

● Clearly needed a solution to remove the uncertainty!



Problem description
We want to measure and visualize GitHub activity of Grafana Labs vs contributors 
over time to make sure we have a healthy community and keep growing the 
contributor base



Solution
● Process GitHub events
● Build pre-aggregated views 
● Store in a relational database
● Visualize in Grafana
● Highly inspired by CNCF devstats





Relational database schemas



Relational database schemas optimized for
● Ease of use in Grafana
● Separation of “business logic” and visualization logic
● Performance



Demo



Next steps?
● Make dashboards publicly available on play.grafana.org 
● Make it easier to use for other projects/companies
● Process GitHub events older than 2015-01-01
● Track bugs, feature requests and feature areas?
● Other kinds of visualizations?

We        contributions

https://play.grafana.org/


Resources
● Soon available on https://play.grafana.org 
● Source code: https://github.com/grafana/devtools 
● Public GitHub events archive: https://www.gharchive.org/ 
● https://all.devstats.cncf.io 
● https://github.com/cncf/devstats 

https://play.grafana.org
https://github.com/grafana/devtools
https://www.gharchive.org/
https://all.devstats.cncf.io
https://github.com/cncf/devstats

