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Why you might need to store your metrics?

Most common cases:

I Capacity planning

I Troubleshooting and Postmortems

I Visualization of business data

I And more...



Graphite and its modular architecture

From the graphiteapp.org

I Allows to store time-series data
I Easy to use — text protocol and HTTP API

echo "metric.name 1.234 $(date +%s)" | nc host 2003

I Modular — you can replace any part of it

http://graphiteapp.org


Graphite: Example

https://host/render?target=aliasByNode(carbon.*.metricsRecevied,1)



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.
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Original stack
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carbon-aggegator



Problems: Relay
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Problems: Scalability
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Problems: Consistency
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Need resync after failures



Problems: Render time
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Replacing carbon-relay

LoadBalancer
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Replacing carbon-relay

carbon-c-relay:

I Written in C

I Routes 1M data points per second using only 2 cores

I L7 LB for graphite line protocol (RR with sticking)

I Can do aggregations

I Buffers the data if upstream is unavailable



Zipper stack: Solution

Query: target=sys.server.cpu.user

Result:

t0 V V V V V t1 Node1

t0 V V V V V t1 Node2

t0 V V V V V V V t1 Zipped metric



Zipper stack: architecture

LoadBalancer
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Zipper stack: results

I Written in Go

I Can query store servers in parallel

I Can ”Zip” the data

I carbonzipper ⇔ carbonserver — 2700 RPS
graphite-web ⇔ carbon-cache — 80 RPS.

I carbonserver is now part of go-carbon (since December 2016)



Metric distribution: how it works

Up to 20% difference in worst case



Metric distribution: jump hash

arxiv.org/pdf/1406.2294v1.pdf

https://arxiv.org/pdf/1406.2294v1.pdf


Rewriting Frontend in Go: carbonapi

LoadBalancer
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Rewriting Frontend in Go: result

I Significantly reduced response time for users (15s ⇒ 0.8s)

I Allows more complex queries because it’s faster

I Easier to implement new heavy math functions

I Parsing and functions are available as separate libraries.



Replication techniques and their pros and cons
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Replication techniques and their pros and cons

a,e c,g
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Replication Factor 1, randomized



Replication techniques and their pros and cons



Replication techniques and their pros and cons



Adding simple tags

Example:
target=sum(virt.v1.*.dc:datacenter1.status:live.role:graphiteStore.text-
match:metricsReceived)

I Separated tags stream and storage

I No history

I No negative match support (yet)

I Only ”and” syntax



What’s next?

I Find a replacement for Whisper (in progress)

I Replace graphite line protocol between components (in
progress)

I Migrate to streaming protocol between backends (in progress).

I Implement differential flamegraphs

I Continue to work on collecting traces



It’s all Open Source!

I carbon-c-relay — github.com/grobian/carbon-c-relay

I carbonzipper — github.com/go-graphite/carbonzipper

I go-carbon — github.com/lomik/go-carbon

I carbonapi — github.com/go-graphite/carbonapi

I carbonsearch — github.com/kanatohodets/carbonsearch

I gorelka — github.com/go-graphite/gorelka

I flamegraphs — github.com/Civil/ch-flamegraphs

I replication factor test — github.com/Civil/graphite-rf-test

Several major users: Booking.com, eBay Classifieds Group and
Slack

https://github.com/grobian/carbon-c-relay
https://github.com/go-graphite/carbonzipper
https://github.com/lomik/go-carbon
https://github.com/go-graphite/carbonapi
https://github.com/kanatohodets/carbonsearch
https://github.com/go-graphite/gorelka
https://github.com/Civil/ch-flamegraphs
https://github.com/Civil/graphite-rf-test


Questions?

vladimir.smirnov@booking.com

civil.over@gmail.com

Twitter: @Civilus

Facebook: civilus

Telegram: Civiloid

LinkedIn: vladsmirnov

gophers.slack.com #zipperstack

mailto:vladimir.smirnov@booking.com
mailto:civil.over@gmail.com
https://twitter.com/Civilus
https://www.facebook.com/civilius
https://t.me/Civiloid
https://www.linkedin.com/in/vladsmirnov/
https://gophers.slack.com/messages/zipperstack/


Thanks!

We are hiring SREs in Amsterdam!
https://workingatbooking.com

https://workingatbooking.com/


Bonus: Instrumenting: FlameGraphs: Before



Bonus: Instrumenting: FlameGraphs: After



Bonus: Instrumenting: Conclusion

I Collect and Store information about every metric

I Database: Clickhouse

I Stores raw data about each metric: name, size, mtime, access
time, etc.



Bonus: Instrumenting: Profiling stack
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