
Graphite@Scale:
How to store millions of metrics per second

Vladimir Smirnov
System Administrator

GrafanaCon EU 2018
1 March 2017



Why you might need to store your metrics?

Most common cases:

I Capacity planning

I Troubleshooting and Postmortems

I Visualization of business data

I And more...



Graphite and its modular architecture

From the graphiteapp.org

I Allows to store time-series data
I Easy to use — text protocol and HTTP API

echo "metric.name 1.234 $(date +%s)" | nc host 2003

I Modular — you can replace any part of it

http://graphiteapp.org


Graphite: Example

https://host/render?target=aliasByNode(carbon.*.metricsRecevied,1)



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Our current setup

I O(100) Storage servers in multiple DCs

I O(10) of Frontend Servers

I O(100) TB of data in total

I O(100 M) unique metrics

I O(10 M) unique points per second

I O(10 k) RPS on Frontend

I O(10 k) of Individual Metric Requests per second

I O(10 M) points fetched from storage every second.



Original stack

LoadBalancer

graphite-web

graphite-web
carbon-cache

Store1

DC1

Servers, Apps, etc

 carbon-relay

Metrics

User Requests

graphite-web
carbon-cache

Store2

graphite-web

graphite-web
carbon-cache

Store1

DC2

graphite-web
carbon-cache

Store2

carbon-aggegator



Problems: Relay

LoadBalancer

graphite-web

graphite-web
carbon-cache

Store1

DC1

Servers, Apps, etc

 carbon-relay

Metrics

User Requests

graphite-web
carbon-cache

Store2

graphite-web

graphite-web
carbon-cache

Store1

DC2

graphite-web
carbon-cache

Store2

carbon-aggegator SPOF



Problems: Scalability

LoadBalancer

graphite-web

graphite-web
carbon-cache

Store1

DC1

Servers, Apps, etc

 carbon-relay

Metrics

User Requests

graphite-web
carbon-cache

Store2

graphite-web

graphite-web
carbon-cache

Store1

DC2

graphite-web
carbon-cache

Store2

carbon-aggegator SPOF

Doesn’t scale well



Problems: Consistency

LoadBalancer

graphite-web

graphite-web
carbon-cache

Store1

DC1

Servers, Apps, etc

 carbon-relay

Metrics

User Requests

graphite-web
carbon-cache

Store2

graphite-web

graphite-web
carbon-cache

Store1

DC2

graphite-web
carbon-cache

Store2

carbon-aggegator SPOF

Doesn’t scale well

Need resync after failures



Problems: Render time

LoadBalancer

graphite-web

graphite-web
carbon-cache

Store1

DC1

Servers, Apps, etc

 carbon-relay

Metrics

User Requests

graphite-web
carbon-cache

Store2

graphite-web

graphite-web
carbon-cache

Store1

DC2

graphite-web
carbon-cache

Store2

carbon-aggegator SPOF

Doesn’t scale well

Need resync after failures Slow renders



Replacing carbon-relay

LoadBalancer

graphite-web

graphite-web
carbon-cache

Store1

DC1

carbon-c-relay

 carbon-c-relay

Metrics

User Requests

graphite-web
carbon-cache

Store2

graphite-web

graphite-web
carbon-cache

Store1

DC2

graphite-web
carbon-cache

Store2

 carbon-c-relay

Servers, Apps, etc Server

 carbon-c-relay



Replacing carbon-relay

carbon-c-relay:

I Written in C

I Routes 1M data points per second using only 2 cores

I L7 LB for graphite line protocol (RR with sticking)

I Can do aggregations

I Buffers the data if upstream is unavailable



Zipper stack: Solution

Query: target=sys.server.cpu.user

Result:

t0 V V V V V t1 Node1

t0 V V V V V t1 Node2

t0 V V V V V V V t1 Zipped metric



Zipper stack: architecture

LoadBalancer

carbonzipper

carbonserver
go-carbon

Store1

DC1

User Requests

carbonserver
go-carbon

Store2

carbonzipper

carbonserver
go-carbon

Store1

DC2

carbonserver
go-carbon

Store2

graphite-web graphite-web



Zipper stack: results

I Written in Go

I Can query store servers in parallel

I Can ”Zip” the data

I carbonzipper ⇔ carbonserver — 2700 RPS
graphite-web ⇔ carbon-cache — 80 RPS.

I carbonserver is now part of go-carbon (since December 2016)



Metric distribution: how it works

Up to 20% difference in worst case



Metric distribution: jump hash

arxiv.org/pdf/1406.2294v1.pdf

https://arxiv.org/pdf/1406.2294v1.pdf


Rewriting Frontend in Go: carbonapi

LoadBalancer

carbonzipper

carbonserver
go-carbon

Store1

DC1

 carbon-c-relay

User Requests

carbonserver
go-carbon

Store2

graphite-web carbonapi



Rewriting Frontend in Go: result

I Significantly reduced response time for users (15s ⇒ 0.8s)

I Allows more complex queries because it’s faster

I Easier to implement new heavy math functions

I Parsing and functions are available as separate libraries.



Replication techniques and their pros and cons

a,h c,a

b,c d,e

e,f g,b

f,d h,g

Replication Factor 2



Replication techniques and their pros and cons

a,e c,g

b,f d,h

a,e c,g

b,f d,h

Replication Factor 1



Replication techniques and their pros and cons

a,e c,g

b,f d,h

a,g h,e

c,f b,d

Replication Factor 1, randomized



Replication techniques and their pros and cons



Replication techniques and their pros and cons



Adding simple tags

Example:
target=sum(virt.v1.*.dc:datacenter1.status:live.role:graphiteStore.text-
match:metricsReceived)

I Separated tags stream and storage

I No history

I No negative match support (yet)

I Only ”and” syntax



What’s next?

I Find a replacement for Whisper (in progress)

I Replace graphite line protocol between components (in
progress)

I Migrate to streaming protocol between backends (in progress).

I Implement differential flamegraphs

I Continue to work on collecting traces



It’s all Open Source!

I carbon-c-relay — github.com/grobian/carbon-c-relay

I carbonzipper — github.com/go-graphite/carbonzipper

I go-carbon — github.com/lomik/go-carbon

I carbonapi — github.com/go-graphite/carbonapi

I carbonsearch — github.com/kanatohodets/carbonsearch

I gorelka — github.com/go-graphite/gorelka

I flamegraphs — github.com/Civil/ch-flamegraphs

I replication factor test — github.com/Civil/graphite-rf-test

Several major users: Booking.com, eBay Classifieds Group and
Slack

https://github.com/grobian/carbon-c-relay
https://github.com/go-graphite/carbonzipper
https://github.com/lomik/go-carbon
https://github.com/go-graphite/carbonapi
https://github.com/kanatohodets/carbonsearch
https://github.com/go-graphite/gorelka
https://github.com/Civil/ch-flamegraphs
https://github.com/Civil/graphite-rf-test


Questions?

vladimir.smirnov@booking.com

civil.over@gmail.com

Twitter: @Civilus

Facebook: civilus

Telegram: Civiloid

LinkedIn: vladsmirnov

gophers.slack.com #zipperstack

mailto:vladimir.smirnov@booking.com
mailto:civil.over@gmail.com
https://twitter.com/Civilus
https://www.facebook.com/civilius
https://t.me/Civiloid
https://www.linkedin.com/in/vladsmirnov/
https://gophers.slack.com/messages/zipperstack/


Thanks!

We are hiring SREs in Amsterdam!
https://workingatbooking.com

https://workingatbooking.com/


Bonus: Instrumenting: FlameGraphs: Before



Bonus: Instrumenting: FlameGraphs: After



Bonus: Instrumenting: Conclusion

I Collect and Store information about every metric

I Database: Clickhouse

I Stores raw data about each metric: name, size, mtime, access
time, etc.



Bonus: Instrumenting: Profiling stack


	Quick introduction to Graphite
	Why you might need to store your metrics?
	Graphite and its modular architecture

	Graphite@Booking.com
	Scaling graphite
	Feel the scale


