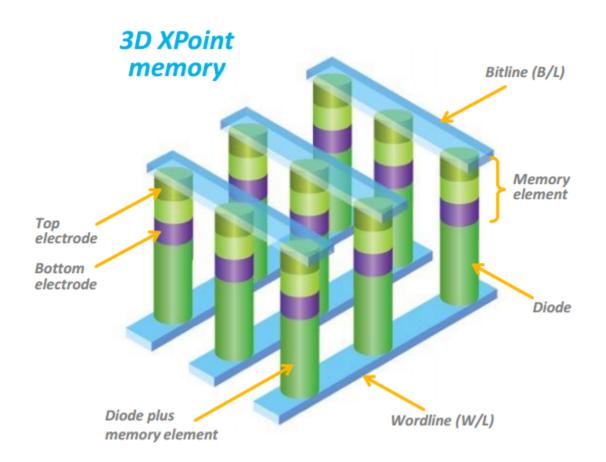
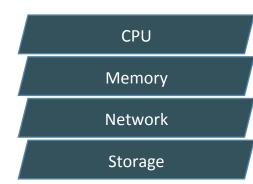
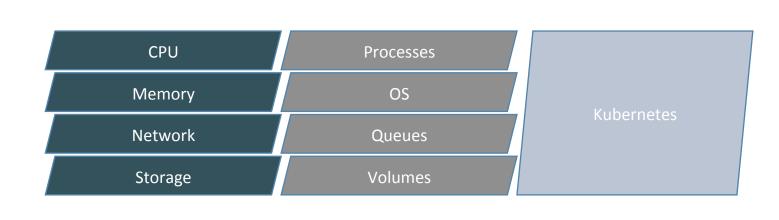

Hi


Nicholas Weaver @lynxbat





Applications

Services

"Stacks"

Jobs

Data

Hardware Runtime

Application

Service

Location

Alerting

Tagging

GEO

Context

Places

Database


Message Bus

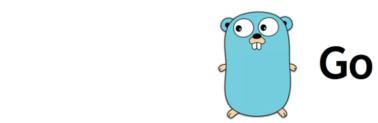
Schedulers

APIs

SnapAn open telemetry framework

The "Behind the scenes" work

- Testing infrastructure
- Automated release and build processes
- Plugin stability testing


The same original features but better

- Tribe clustering
- Dynamic plugin upgrades
- REST API
- Snap Workflow

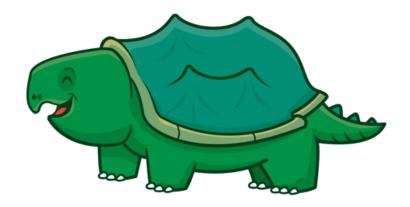
4GRPG

4GRPG

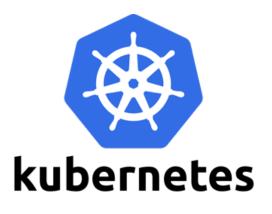
before Dynamic Metrics

Grab Interface 1 Packet Throughput on Container ID == Meeseeks

Grab Interface 2 Network Packet Throughput on Container ID == Squanchy


Grab Interface 1 Network Packet Throughput on Container ID == RickSanchez

after Dynamic Metrics


Grab Interface * Packet Throughput on Container ID == *

Snap 1.0

An open telemetry framework

Snap applied

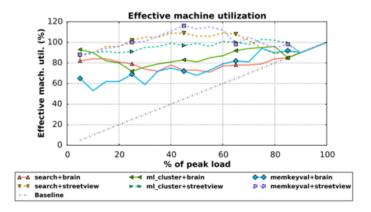
Snap features for 2017

Tribe 2.0
Streaming (!)

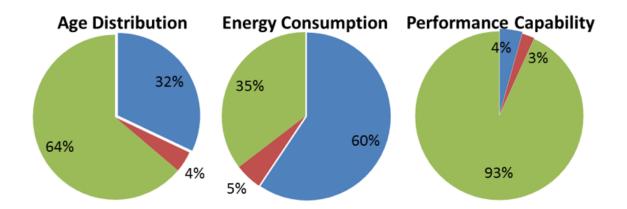
Embedded Plugins
Tons of new Intel plugins

We think Snap itself is kind of cool

But we built it for what is next

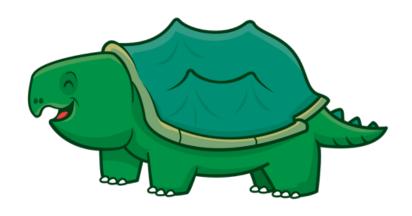

Hardware health was modeled for you?

Predicting failure became the norm rather than reacting to it?


Workload measurement was predictable?

Colocation was predictable?

Scenario / Load	5%	15%	25%	35%	45%	55%	65%	75%	85%	95%
Caffe	32.0%	33.2%	35.0%	37.9%	43.3%	48.0%	51.5%	58.2%	70.6%	230.8%
Stream 100M	39.6%	63.4%	169.9%	948.3%	1826.6%	2588.3%	2639.9%	2592.5%	2452.2%	2450.3%
memBW	31.8%	35.1%	37.2%	40.9%	45.5%	50.9%	60.0%	77.9%	101.0%	106.8%
L1 Instruction	33.9%	35.7%	37.7%	44.3%	53.6%	76.0%	988.5%	782.3%	1282.4%	950.1%
L1 Data	32.9%	33.9%	37.5%	41.3%	48.2%	55.1%	78.6%	124.1%	479.3%	488.0%
Baseline	32.0%	34.8%	36.4%	38.7%	43.9%	48.1%	52.8%	55.9%	64.3%	75.2%


Schedulers like Kubernetes implicitly understood power, thermal, workload SLA's, networking queues and more?

Hardware was designed to expose telemetry That is relevant to the workloads today?

There was an open source tool that was a foundational component to solving these problems?

Snap 1.0 An open telemetry framework

CALL TO ACTION

- Try Snap: snap-telemetry.io or github.com/intelsdi-x/snap
- Attend Joel and Matt's session tomorrow for a deeper dive
- Find me and ask me about

Reach out to your Intel account person or Intel partner about Snap

Thanks

