
Snap
A story of telemetry, data, python 
And references to Jason Dixon at 
GrafanaCon 2016



Hey Ʋ



The Snap Telemetry Framework



4

what my friends think telemetry is what my parents think telemetry is what society thinks telemetry is

what my boss thinks telemetry is what I think telemetry is what telemetry actually is



(Do I get bonus points for quoting Jason at GrafanaCon?)

“Telemetry refers to the collection of 
measurements, typically of remote 
instruments, for the purposes of 
monitoring.” 

~ Jason Dixon in The Graphite Book



Telemetry Framework ™ 



Client libraries for:
● Prometheus
● Sensu
● Statsd
● & more

● beats
● tcollector
● scollector
● Nagios

● Snap
● collectd
● telegraf
● diamond



Requirements

Composable Declarative Extensible



Composable

Monitoring

Snap



Composable

Monitoring

Snap



Declarative

Explicit definition of 
- Interval 
- Collected metrics
- Published endpoints

Allows for 
- Collect from multiple sensors
- Publish to multiple endpoints
- Multiple workflows at different intervals
- Metrics available upon plugin update

Let’s look at a Task Manifest

“I’ll make you a workflow you can’t refuse”



Extensible

Collect Process Publish



Extensible

 Available in the Plugin Catalog

Collectors written:
● Nginx
● Couchbase
● MongoDB
● Netstat
● Procstat

Publishers written:
● Blueflood
● Couchbase

https://github.com/intelsdi-x/snap/blob/master/docs/PLUGIN_CATALOG.md


Extensible

 Available in the Plugin Catalog

Collectors written:
● Nginx
● Couchbase
● MongoDB
● Netstat
● Procstat

Publishers written:
● Blueflood
● Couchbase

https://github.com/intelsdi-x/snap/blob/master/docs/PLUGIN_CATALOG.md


Extensible

 Available in the Plugin Catalog

Collectors written:
● Nginx
● Couchbase
● MongoDB
● Netstat
● Procstat

Publishers written:
● Blueflood
● Couchbase

https://github.com/intelsdi-x/snap/blob/master/docs/PLUGIN_CATALOG.md


Extensible

 Available in the Plugin Catalog

Collectors written:
● Nginx
● Couchbase
● MongoDB
● Netstat
● Procstat

Publishers written:
● Blueflood
● Couchbase

Grafana Labs

https://github.com/intelsdi-x/snap/blob/master/docs/PLUGIN_CATALOG.md


The Anatomy of a Snap Plugin



Plugin Authoring - Plugin Types  

Collectors Processors Publishers



Plugin Authoring - Lifecycle 

Loading a plugin



Plugin Authoring - Lifecycle 

Loading a plugin

1. Snap starts the plugin 



Plugin Authoring - Lifecycle 

Loading a plugin

1. Snap starts the plugin

2. Snap negotiates with the 
plugin over stdout (handshake)
 



Plugin Authoring - Lifecycle 

Loading a plugin

1. Snap starts the plugin
2. Snap negotiates with the plugin over stdout (handshake)

3. Snap calls the plugin
a. To get its ConfigPolicy

 



Plugin Authoring - Lifecycle 

Loading a plugin

1. Snap starts the plugin 
2. Snap negotiates with the plugin over stdout (handshake)
3. Snap calls the plugin

a. To get its config policy 

b. To get what metrics it
collects

 



Plugin Authoring - Lifecycle 

Loading a plugin

1. Snap starts the plugin 
2. Snap negotiates with the plugin over stdout (handshake)
3. Snap calls the plugin

a. To get its config policy 
b. To get what metrics it exposes

4. Snap stops the plugin

 



Plugin Authoring - Lifecycle 

Starting a task 

 



Plugin Authoring - Lifecycle 

Starting a task 

1. Snap ensures plugins required by the task are running

 



Plugin Authoring - Lifecycle 

Starting a task

1. Snap ensures plugins required by the task are running

a. Plugins that are used have their 
subscriptions increased

 



Starting a task  

1. Snap ensures needed plugins required by the task are running
a. Plugins that are used have their subscriptions increased

     Plugin subscriptions drive the logic 
related to plugin routing and concurrency 

          

 

Plugin Authoring - Lifecycle 



Plugin Authoring - Lifecycle 

Stopping a task 

 



Plugin Authoring - Lifecycle 

Stopping a task

Causes plugins to stop  
When the plugin’s subscription count falls below zero

 



Plugin Authoring - Meta

Plugin Meta



Plugin Authoring - Meta

Plugin Meta

Is communicated over STDOUT between 
the plugin and Snap when a plugin starts



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a 
plugin starts

{"Meta":{"Type":2,"Name":"graphite","Version":5,"RPCType":2,"
RPCVersion":1,"ConcurrencyCount":5,"Exclusive":false,"Cach
eTTL":0,"RoutingStrategy":0},"ListenAddress":"127.0.0.1:37166","
PprofAddress":"0"}



Plugin Authoring - Meta

Plugin Meta

Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name - Plugin name as it will appear in the plugin
             catalog



Plugin Authoring - Meta

Plugin Meta

Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name - name as it will appear in the plugin catalog

● Type   - collector, process, publisher 



Plugin Authoring - Meta

Plugin Meta

Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 

● Version - version of the plugin



Plugin Authoring - Meta

Plugin Meta

Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin

● RPCType - RPC mechanism to be used 



Plugin Authoring - Meta

Plugin Meta

Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin

● RPCType - RPC mechanism to be used 
○ The default is ‘gRPC’
○ We will maintain legacy support for 

GORPC based plugins 



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion  - Defines the version of the service the plugin                         

  implements



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion  - Defines the version of the service the plugin                         

  implements
service Collector {
    rpc CollectMetrics(MetricsArg) returns (MetricsReply) {}
    rpc GetMetricTypes(GetMetricTypesArg) returns (MetricsReply) {}
    rpc Ping(Empty) returns (ErrReply) {}
    rpc Kill(KillArg) returns (ErrReply) {}
    rpc GetConfigPolicy(Empty) returns (GetConfigPolicyReply) {}
}



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion  - Defines the version of the service the plugin                         

  implements
service Processor {
    rpc Process(PubProcArg) returns (MetricsReply) {}
    rpc Ping(Empty) returns (ErrReply) {}
    rpc Kill(KillArg) returns (ErrReply) {}
    rpc GetConfigPolicy(Empty) returns (GetConfigPolicyReply) {}
}



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion  - Defines the version of the service the plugin                         

  implements
service Publisher {
    rpc Publish(PubProcArg) returns (ErrReply) {}
    rpc Ping(Empty) returns (ErrReply) {}
    rpc Kill(KillArg) returns (ErrReply) {}
    rpc GetConfigPolicy(Empty) returns (GetConfigPolicyReply) {}
}



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion  - Defines the version of the service the plugin implements
● RoutingStrategy - Least Recently Used

  Sticky (task)
  Config based



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion   - Defines the version of the service the plugin implements
● RoutingStrategy - Least recently used, Sticky (task) or Config based
● ConcurrencyCount - Defines the maximum number of 

subscriptions the plugin can have before
starting another instance of the plugin



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion   - Defines the version of the service the plugin implements
● RoutingStrategy - Least recently used, Sticky (task) or Config based
● ConcurrencyCount - Defines the maximum number of subscriptions the plugin 

  can have before starting another instance of the plugin
● Exclusive - Results in a single instance of the plugin 

running for any number of subscriptions
(ConcurrencyCount is ignored)



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion   - Defines the version of the service the plugin implements
● RoutingStrategy - Least recently used, Sticky (task) or Config based
● ConcurrencyCount - Defines the maximum number of subscriptions the plugin 

  can have before starting another instance of the plugin
● Exclusive - Results in a single instance of the plugin running for any 

  number of subscriptions
● CacheTTL - Overrides the default CacheTTL of 500ms



Plugin Authoring - Meta

Plugin Meta
Is communicated over STDOUT between the plugin and Snap when a plugin starts

● Name   - name as it will appear in the plugin catalog
● Type     - collector, process, publisher 
● Version - version of the plugin
● RPCType - RPC mechanism to be used 
● RPCVersion   - Defines the version of the service the plugin implements
● RoutingStrategy - Least recently used, Sticky (task) or Config based
● ConcurrencyCount - Defines the maximum number of subscriptions the plugin 

  can have before starting another instance of the plugin
● Exclusive - Results in a single instance of the plugin running for any 

  number of subscriptions
● CacheTTL - Overrides the default CacheTTL of 500ms

  If the framework attempts to call a plugin for a 
  metric before it’s TTL has expired it will be  
  retrieved from the cache instead



Plugin Authoring - Plugin libs

Want to write a plugin?



Plugin Authoring - Plugin libs

Want to write a plugin?
Start with one of the Snap plugin libs



Plugin Authoring - Plugin libs

Want to write a plugin?
Start with one of the Snap plugin libs



Plugin Authoring - Plugin libs

Want to write a plugin?
Start with one of the Snap plugin libs



Plugin Authoring - Plugin libs

Want to write a plugin?
Start with one of the Snap plugin libs



Plugin Authoring

Leveraging existing investments

● Using the plugin-libs wrap existing tools
○ Example: snap-plugin-collector-diamond

https://github.com/jcooklin/snap-plugin-collector-diamond


The Snap Telemetry Framework

To Review



The Snap Telemetry Framework

Snap is an Open Source telemetry framework 
that allows you to collect, process and publish 
measurements.

Collectors Processors Publishers



The Snap Telemetry Framework

Snap 1.0 is a general availability of a rock solid 
daemon with a collection of 67 plugins from 
multiple companies.



The Snap Telemetry Framework

Snap 1.0 is the beginning. And we want you 
involved.

snap-telemetry.io

http://snap-telemetry.io/
http://snap-telemetry.io/


Thank you!



Backup Notes



Everything is Challenging At 
Scale

60



Add new task

61



Add new task

62



define as a 
tribe

Scaling with Tribe

63



Scaling with Tribe

Add new task

64



Snap | Distributed Workflow

Physical/Virtual 
Host

Scheduler

Processing

Publishing

Collection

65



Snap | Distributed Workflow

66

Physical/VM Host

Physical/VM Host

Physical/VM Host

Physical/VM Host

Physical/VM Host Physical/VM Host

Collection

Collection

Collection

Scheduler

Processing Publishing



Customizable definition of task and related 
workflow: 

Collect
Publish

Publish

Collect Publish ProcessCollect Publish

Collect
Process Publish

Process Publish

Snap | Overview – Example Workflows

67


