
The Culture and
Reality of Monitoring at

Stack Overflow

Stack Overflow, Bosun, and
Me

• Been with the company over 6 years

• Although many core values have stayed the same, the company was ~30
people and is now ~300

• We started coding Bosun 3 years ago (Open Sourced 2 years ago)

• Time series alerting was a somewhat novel idea (at least in the open
source world)

• Goal was build an alerting system that could create more informative alerts
with a much better S/N ratio

• With a bigger company and more complexity in the company - thinking
about different problems today: More about how users interact with
monitoring and communicate with it

Some of Stack’s Monitoring
Stack

• Bosun: Alerting IDE

• scollector: Cross platform
collection agent

• OpenTSDB: Current time series
database

• Grafana: User crafted dashboard

• Elastic, Kibana: Can also be
queried via Grafana and Bosun

• BosunRepoter.NET: .NET
Library for Bosun / OpenTSDB

• Opserver: Monitoring dashboard,
control of Redis, Elastic, in depth
SQL monitoring

• Client Timings: Sampled web
browser Performance

• PRIZM: In house A/B testing and
Events

• Looker: Business Analytics

• Solarwinds: Old system, retired
after we switch Observer

The Cultures and
Realities of Monitoring at

Stack Overflow

More accurately…

because reality is far more
complex than our imagination
of it and it is a mix of successes
and failures

I think of the difference between the reality of a
system, and how we imagine and reason about it as
our mental model of a system

Mental models are the abstractions we create to
cope with the complexity of reality

Monitoring a medium of communication that we use
to share these mental models or aspects of them

Effectiveness of monitoring can analyzed as the
effectiveness of end to end communication

Monitoring is Hard Medium
to Communicate with

End to end communication with monitoring involves
Humans communicating via machines to Humans

The model in a reduced form is:

Human => Machine (Software) => Human

Tom creates metric in linux kernel

Jane writes collection agent to gather
the data and send it a TSDB

Alfred writes alerts in Bosun to query the TSDB.

Alfred and Sally also create dashboards
 in Grafana against the TSDB

Jill and Co Consume Alerts and Dashboards

Some of these people may be the member of the
same organization or none of them may be.

So often we are communicating serially through
software

So when one light goes out, the rest follow

Human (Author) =>

Machine (Software) =>

(Consumer) Human

If there is human => human communication in a
medium other than documentation, it does not
scale and is error prone

Human => Machine => Human

Human <=> Machine

Looking at Bosun and Grafana at Stack
Overflow in Terms of Human Interaction

Three Personas

1. Authors

2. Consumers

3. Some Degree of Author and Consumer

Bosun Alerting Author
Workflow

Workflow is all in same UI

• Level 1: Graph, which becomes an expression

• Level 2: Expression: Manipulate the query you
graphed

• Level 3: Rule: Refine expression, create
template, preview with historical testing. Save
Config (New!)

But you pass the trials to level up to Level 3

Description!

Unit!

Auto Gauge / Counter!

Builds Query Expression!

GREAT!

Except for Level 1 is deceptively simple…

Some Issues for the Graph Page
• If you don’t understand the TSDB the graphs may not be what

you expect. In our case, OpenTSDB it means you need to
understand:
• How tags work: Group By / Filter
• Aggregation
• Counter / Gauge (and that counters are not in correct place in

OpenTSDB’s order of operations)
• Downsampling
• Linear Interpolation

• The description could be better since it is specific to physical
interfaces. Also does not describe how the tags work

• The Y-Axis is Si units, which means base 10. Sometimes
people in base 2 with network, and even thought it says bytes
people think bits out of habit

How it fails in terms of
communication

• Needing to understand the TSDB, the underlying
metrics, and how they combine leads to data not
meaning what authors think it means early in the
pipeline

and/or

• Only accessible to authors that are willing to
accept a steep learning curve

Bosun Level 1
Congrats, you made it to:

Expression Page

Good

• A REPL for Bosun’s expression language. Lets you
incrementally craft expressions and see the results
of intermediate stages

• Power …

Raw Power

but no more buttons

Expression Language is
Quick to Learn

If:

• This makes immediate sense to you: A functional
set based and typed domain specific language
(DSL) for querying time series databases and
reducing time series into other sets

• You read all the documentation, look at examples
on the internet, and watch some training youtube
videos with careful attention

Example Incantation

Bosun Level 2

Level up!

Rule Page
• Create rich templates:

• Tables, Graphs, Links, Elastic Logs, Results from
HTTP calls etc

• After learning the currently poorly documented
template language

• Test the alert against history and view instances of the
template

• Save the config

Reached Bosun Level 3

Why the complexity?

Give authors the power to achieve good communication
with alerting:

1. Good signal to noise ratio

2. Informative alerts

3. Power user workflow (IDE)

Firstly

Target

Secondly

Bosun puts the burden
of communication on

the author

• Moves communication earlier in the pipeline

• Reality of alerts often has exceptions - so the
power of the expression language is used a lot in
practice

• Tune alerts up front and workflow for fast follow up
tuning

• As a team scales, the author to consumer ratio for
alerts and dashboards increases - so it scales
better

however, there are consequences

Now authors are scarce
• Authorship requires training / time investment so there

are less authors

• As the number of teams increases, we have a mix of

1. Self-Service DevOps: Team uses Bosun
independently

2. Concierge: Bosun experts create things for people
(or help)

3. Missing: Team has observability and alerting gaps

Thirdly

Reasons.

• Time

• Uncharted territory

• Seemed like a good idea at the time

• and other excuses…

Complexity / Power
• Rule of thumb is that as something becomes more

flexible and powerful it also becomes more
complicated

• However, simplicity is a feature since it allows
humans to reason about it

• Simplifying complexity for authors while maintaining
power to handle reality is my new goal

Save Feature
• Mistakingly sacrificing usability for power

• Did not have saving in UI because we wanted
version control - and integration with VCS was too
much work

• Realized that if we could just have a save hook with
some locking, and the program that runs on save
hook could handle VCS as long as Bosun was the
only entity pushing to the repo

Consumer

Alert Handling Workflow
• Bosun incident (alert) handling workflow is non-

traditional:

• Incidents only re-notify on severity escalation, or
if escalations have been set up for alerts that
have not been acknowledged by a human

• Humans must close alerts

• There are no “normal notifications”

• Requires discipline

• Works well in that case, not aware of incidents where we
did not get an alert because it was not closed

• Lack of up notifications means the anti-pattern of “alert,
but not going to look because got an up alert” is avoided.
Also inverse of up condition does not always mean “okay”

• No need for flapping detection

• Results in far less incident notifications

Results of that design

Downsides

• Not suitable for all situations (we have another per
alert option that is doesn’t go through the state flow,
but has no flapping prevention)

• Not suitable for all teams (i.e. small number of high
level alerts)

Grafana at Stack

• Since Bosun’s visualization is limited to alerts -
needed to solution for self-service dashboards for
SREs and Devs

• Installed it, pointed it at OpenTSDB

• People just started using it to create dashboards

Bosun Plugin for Grafana

• Grafana (or visualization in general) is more usable
than bosun, so turn Grafana authors and
consumers into Bosun consumers

• Show relevant alerts on dashboards, and handle
them there (less places is better)

• Use the expression language to achieve
visualization that Grafana can’t do

Query Generator
V1: A Text box

V2: UI

No place to expose to user

View Manage Incidents in
Grafana

Do Crazy Stuff 
(if power user)

Has it worked?

• Sort of - helps to create better dashboards and
more eyes on alerts

• But hasn’t really created significantly more bosun
authors at Stack Overflow

Future Usability?
• Usability:

• More Training, Documentation

• Simple use case: Use Grafana alerting UI to create
Bosun alerts?

• IDE Usability: Autocompletion, integrated
documentation?

• Refactor state machine to smooth out alert handling
workflow

What are the solutions?
Work backwards from what we are trying to
communicate when creating dashboards and alerts

Over communicate early in the pipeline

Think of the audience, think of what they know and
don’t - and what you want them to know

Iterate on metrics, alerts, and dashboards in terms of
how effectively they communicate

Focus on human users more when building monitoring

Questions

