


Philip Wernersbach
Software Engineer

Ingram Content Group

https://github.com/philip-wernersbach

https://www.linkedin.com/in/pwernersbach




* l'work in Ingram Content Group'’s
Automated Print On Demand division

- We have an automated process in
which publishers (independent or
corporate) request books via a website,
and we automatically print, bind, and
ship those books to them

« This process involves lots of hardware
devices and software components




The Problem



The Problem

“How do we aggregate and track metrics
from our hardware and software sources,

and display those data points in a graph
format to the end user?”

- Grafanal!



Which data store should we
use with Grafana?

Out of the box, Grafana supports
Elasticsearch, Graphite, InfluxDB,
KairosDB, OpenTSDB



7

Which data store should we
use with Grafana?

We compared the options and tried
InfluxDB

There were several sticking points
with InfluxDB, both technical and
organizational, that caused us to rule

it out



8

Which data store should we
use with Grafana?

We already have a MySQL cluster
deployed, System Administrators and

Operations know how to manage it
Decided to go with MySQL as a data
store for Grafana



The Solution: Ingram
Content’s Grafana-MySQL
Integration



The
Integration

»Written in Nim

» Emulates an InfluxDB server

» Connects to an existing
MySQL server

» Protocol compatible with
InfluxDB 0.9.3

» Acts as a proxy that converts
the InfluxDB protocol to the
MySQL protocol and vice-
versa



Grafana

The
Integration

Integration Proxy
(InfluxDB compatible)

MySQL




The Challenges!



The
Challenges!

Database
Engine
Comparison

InfluxDB

» Time Series
database

» “time” is a special
value, has special
meaning

» Applies special
logic to “time”

SMART!

MySQL

» Generic relational
database

» “time” is a generic
data value

» Doesn’t apply
special logic

DUMB!



InfluxDB

“SELECT count(bar1) FROM foo
The WHERE bar1 > 0 AND bar2 > 0 AND
Challenges! time > now() - 7d GROUP BY time(1h)”

Query
Comparison




MySQL

“SELECT time, count(bar1) FROM foo

The WHERE bar1 > 0 AND bar2 > 0 AND
Challenges! time > NOW(6) - INTERVAL 7 DAY

Que GROUP BY YEAR(time), MONTH(time),
Comrgarison DAY (time), HOUR(time) ORDER BY time

ASC”




InfluxQL != SQL

» InfluxQL is SQL-like, but
e different enough that it can’t
LB be passed through to MySQL

SQL




The
Challenges!

InfluxQL !=
SQL

P

‘time” is SELECT’d automatically
implicitly in InfluxDB

“SELECT bar FROM foo” = “SELECT time, bar
FROM FOO”

GROUP’ing on “time” is smart in

InfluxDB, and dumb in MySQL
See slides 16 and 17

“time” in epoch format with

millisecond precision is a float in

MySQL
“FROM_UNIXTIME(1444667802.145)’



The
Challenges!

InfluxQL !=
SQL

InfluxDB series are roughly equivalent
to MySQL tables, but the
management syntax is sometimes

different

“DROP SERIES FROM foo” - “DELETE FROM
foo”

InfluxDB allows quoted identifiers,

MySQL is more restrictive

“SELECT * FROM foo WHERE bar > ‘0”7 -
Silently returns garbage in MySQL

Grafana quotes identifiers aggressively, so we had
to patch it



There’s probably more InfluxQL-
SQL incompatibilities, but these

are the ones that we've run into
The

Challenges! with Grafana at Ingram Content
Group.

InfluxQL !=
SQL




P,
e J&%
s
‘

The Benefits!



» Allows us to leverage System
Administrator’'s and Operation’s
existing knowledge of MySQL

The Benefits!

» Allows us to process large amounts of
data

> InfluxDB had issues when we tried to insert about
a million points at a time, MySQL handles this with
no problem




The Benefits!

We can use full, regular SQL for our
Grafana queries in addition to

InfluxQL
Think JOINS, etc.

We're doing massive batch inserts,
and MySQL'’s query cache makes

Grafana queries significantly faster

This is obviously use case specific, but shows how
you can tune MySQL to your specific use case



