
The new InfluxDB storage engine
and some query language ideas

Paul Dix
CEO at InfluxDB

@pauldix
paul@influxdb.com

mailto:paul@influxdb.com

preliminary intro materials…

Everything is indexed by time
and series

Shards

10/11/2015 10/12/2015

Data organized into Shards of time, each is an underlying DB
efficient to drop old data

10/13/201510/10/2015

InfluxDB data

temperature,device=dev1,building=b1 internal=80,external=18 1443782126

InfluxDB data

temperature,device=dev1,building=b1 internal=80,external=18 1443782126

Measurement

InfluxDB data

temperature,device=dev1,building=b1 internal=80,external=18 1443782126

Measurement Tags

InfluxDB data

temperature,device=dev1,building=b1 internal=80,external=18 1443782126

Measurement Tags Fields

InfluxDB data

temperature,device=dev1,building=b1 internal=80,external=18 1443782126

Measurement Tags Fields Timestamp

InfluxDB data

temperature,device=dev1,building=b1 internal=80,external=18 1443782126

Measurement Tags Fields Timestamp

We actually store up to ns scale timestamps
but I couldn’t fit on the slide

Each series and field to a unique ID
temperature,device=dev1,building=b1#internal

temperature,device=dev1,building=b1#external

1

2

Data per ID is tuples ordered by time
temperature,device=dev1,building=b1#internal

temperature,device=dev1,building=b1#external

1

2

1 (1443782126,80)

2 (1443782126,18)

Storage Requirements

High write throughput
to hundreds of thousands of series

Awesome read performance

Better Compression

Writes can’t block reads

Reads can’t block writes

Write multiple ranges
simultaneously

Hot backups

Many databases open in a
single process

InfluxDB’s
Time Structured Merge Tree

(TSM Tree)

InfluxDB’s
Time Structured Merge Tree

(TSM Tree)
like LSM, but different

Components

WAL
In

memory
cache

Index
Files

Components

WAL
In

memory
cache

Index
Files

Similar to LSM Trees

Components

WAL
In

memory
cache

Index
Files

Similar to LSM Trees

Same

Components

WAL
In

memory
cache

Index
Files

Similar to LSM Trees

Same like MemTables

Components

WAL
In

memory
cache

Index
Files

Similar to LSM Trees

Same like MemTables like SSTables

awesome time series data

WAL (an append only file)

awesome time series data

WAL (an append only file)

in memory index

In Memory Cache

// cache and flush variables
cacheLock sync.RWMutex
cache map[string]Values
flushCache map[string]Values

temperature,device=dev1,building=b1#internal

In Memory Cache

// cache and flush variables
cacheLock sync.RWMutex
cache map[string]Values
flushCache map[string]Values

writes can come in while WAL flushes

// cache and flush variables
cacheLock sync.RWMutex
cache map[string]Values
flushCache map[string]Values

 dirtySort map[string]bool

values can come in out of order.
mark if so, sort at query time

Values in Memory
type Value interface {
 Time() time.Time

 UnixNano() int64
 Value() interface{}
 Size() int

}

awesome time series data

WAL (an append only file)

in memory index

on disk index

(periodic flushes)

The Index

Data File

Min Time: 10000
Max Time: 29999

Data File

Min Time: 30000
Max Time: 39999

Data File

Min Time: 70000
Max Time: 99999

Contiguous blocks of time

The Index

Data File

Min Time: 10000
Max Time: 29999

Data File

Min Time: 15000
Max Time: 39999

Data File

Min Time: 70000
Max Time: 99999

can overlap

The Index

cpu,host=A

Min Time: 10000
Max Time: 20000

cpu,host=A

Min Time: 21000
Max Time: 39999

Data File

Min Time: 70000
Max Time: 99999

but a specific series must not overlap

The Index

Data File
Data File

Data File

a file will never overlap with
more than 2 others

time ascending

Data FileData File

Data files are read only, like LSM
SSTables

The Index
Data File

Min Time: 10000
Max Time: 29999

Data File

Min Time: 30000
Max Time: 39999

Data File

Min Time: 70000
Max Time: 99999

Data File

Min Time: 10000
Max Time: 99999

they periodically
get compacted

(like LSM)

Compacting while appending new data

Compacting while appending new data

func (w *WriteLock) LockRange(min, max int64) {
 // sweet code here

}

func (w *WriteLock) UnlockRange(min, max int64) {
 // sweet code here

}

Compacting while appending new data

func (w *WriteLock) LockRange(min, max int64) {
 // sweet code here

}

func (w *WriteLock) UnlockRange(min, max int64) {
 // sweet code here

}

This should block until we get it

Locking happens inside each
Shard

Back to the data files…

Data File

Min Time: 10000
Max Time: 29999

Data File

Min Time: 30000
Max Time: 39999

Data File

Min Time: 70000
Max Time: 99999

Data File Layout

Data File Layout

Similar to SSTables

Data File Layout

Data File Layout

blocks have up to 1,000 points by default

Data File Layout

Data File Layout

4 byte position means data files can be at most 4GB

Data Files

type dataFile struct {
 f *os.File
 size uint32
 mmap []byte

}

Memory mapping lets the OS
handle caching for you

Compressed Data Blocks

Timestamps: encoding based
on precision and deltas

Timestamps (best case):
Run length encoding

Deltas are all the same for a block
(only requires start time, delta, and count)

Timestamps (good case):
Simple8B

Ann and Moffat in "Index compression using 64-bit words"

Timestamps (worst case):
raw values

nano-second timestamps with large deltas

float64: double delta
Facebook’s Gorilla - google: gorilla time series facebook

https://github.com/dgryski/go-tsz

https://github.com/dgryski/go-tsz

booleans are bits!

int64 uses zig-zag
same as from Protobufs

(adding double delta and RLE)

string uses Snappy
same compression LevelDB uses

(might add dictionary compression)

How does it perform?

Compression depends greatly
on the shape of your data

Write throughput depends on
batching, CPU, and memory

one test:
100,000 series
100,000 points per series
10,000,000,000 total points
5,000 points per request
c3.8xlarge, writes from 4 other systems
~390,000 points/sec
~3 bytes/point (random floats, could be better)

~400 IOPS
30%-50% CPU

There’s room for improvement!

Detailed writeup
https://influxdb.com/docs/v0.9/concepts/storage_engine.html

https://influxdb.com/docs/v0.9/concepts/storage_engine.html

Query Language Ideas

Three different kinds of functions

Aggregates
select mean(value)
from cpu
where host = 'A'
and time > now() - 4h
group by time(5m)

Transformations
select derivative(value)
from cpu
where host = 'A'
and time > now() - 4h
group by time(5m)

Selectors
select min(value)
from cpu
where host = 'A';
and time > now() - 4h
group by time(5m)

Then there are fills
select mean(value)
from cpu
where host = 'A'
and time > now() - 4h
group by time(5m)
fill(0)

How to differentiate between the
different types?

How do we chain functions
together?

without making breaking changes to InfluxQL

Mix jQuery style with InfluxQL

SELECT
 mean(value).fill(previous).derivate(1s).scale(100).as(‘mvg_avg’)
FROM measurement
WHERE time > now() - 4h
GROUP BY time(1m)

D3 style
SELECT
 mean(value)
 .fill(previous)
 .derivate(1s)
 .scale(100)
 .as(‘mvg_avg’)
FROM measurement
WHERE time > now() - 4h
GROUP BY time(1m)

Moving the FROM?

SELECT
 from('cpu').mean(value)
 from('memory').mean(value)
WHERE time > now() - 4h
GROUP BY time(1m)

Moving the FROM?

SELECT
 from('cpu').mean(value)
 from('memory').mean(value)
WHERE time > now() - 4h
GROUP BY time(1m)

consistent time and filtering applied to both

JOIN
SELECT
 join(
 from('errors')
 .count(value),
 from('requests')
 .count(value)
).fill(0)
 .count(value)
WHERE time > now() - 4h
GROUP BY time(1m)

Thank you!
Paul Dix
@pauldix

paul@influxdb.com

mailto:paul@influxdb.com

